关闭

澳际学费在线支付平台

10月GMAT阅读机经:Hurricane.

刚刚更新 编辑: 浏览次数:239 移动端

  伴随着10月小长假的匆匆过去,大家可不要因为假期而松懈哦,因为马上就迎来了GMAT机经换库的日子,10月GMAT机经换库了,现在就由小编来为大家整理十月份的GMAT数学阅读机经整理,下面是关于GMAT阅读机经的相关问题,希望对大家有所帮助。

  原始

  [原始1] 一篇关于hurricane 关键词有surface-level, flight-level;

  考古

  [考古1]

  V1:不太长1页

  P1:科学家用一种神奇的飞机(words unknown)到风暴10000米上方去探测,直到1970年从飞机开始放球球,GPS小球球可以测出风暴强度。风暴之眼是说风暴的靠近中心的但有不是中心的强度最大的部分。整个风暴的强度是在海平面以上1300米左右最大,然后周围只有中心的70,(我总结像一个两头尖的陀螺,就很容易记了)

  P2:这个测试方法也是有局限性的,要和实际情况结合,比如某一次的一个风暴,地面的强度超预期,从上到下开始衰减。 用一些原始工具比如气压表,温度计帮助调整参数是很必要的。

  主旨: 讲一种新型的测试方法,当然它也有局限性要和实际情况结合。

  V2:

  P1 讲台风hurricane各部分的风力可以通过一种气象飞机来测量,

  最新的模型还做了改进

  可以测量一个台风各部分的风力情况

  P2 讲具体是怎么做的测量,讲细节

  首先记住台风的几个测量部位和名词,

  一个是台风眼,就是eye,测量部位是eye的surface,我猜就是台风眼的外圈风力

  一个是台风外围,叫outer reach,测的部位也是surface,我猜就是台风最外圈的风力

  一个是fleight部位风力,我猜是比较高的一个位置的风力

  然后讲测量这三个部位的一些特征,有些细节

  我只记得一直讲到这一段的最后,讲了一个有具体数据的规律

  就是台风eye surface的风力,一般是fleight高度风力的90,

  同时台风outer reach surface的风力,一般是fleight高度风力的78%

  其实就是说一个当做最大的话,另外两个点都小一点

  P3 第三段紧接着第二段末尾的这个规律,讲了一个例外,

  说有一次,叫某台风的,测量结果是,fleight高度风力才150,另外两个风力比它还高

  这就说明了,科学家之前认为的规律是有例外情况的,而且需要根据实际情况修正

  然后分析这种例外情况,可能是因为这些原因导致的

  一个是跟convict有关,肯定是con带头的一个气象词,我不知道这个单词到底是什么

  一个是跟sea surface的热气流有关

  也是一个结构题,我选的大概就是讲测量台风风力的一个方法,以及转折的一个短句

  再一个题目是考结尾那个convict和sea level surface热气流的,问的好像是

  这两个因素应该怎么搭配会出现例外情况

  (牛人考古出来的考古内容,我确认就是我看到的阅读

  把这些综合起来就差不多全了,考古提到的这些结构基本都是在那个文章里存在的

  比如下面V3里面提到的说科技进步使用了航拍技术,使得现在的气象飞机测台风更加可行

  这个我也看到的,只是后来没记得这么多,每个人记得不同细节了

  还有碰到的问题也不一定一样

  比如下面V3里面提到有一个问题,30楼高的地方人觉得哪个高度玻璃会碎

  这个问题我就没有碰到)

  V3: 是讲飓风,讲飓风ground level和上层有什么不同,风速啊,压力什么的好像。然后好像有用什么仪器测。。对了,记得第二段提出一个新的概念,说是几几年发生的某飓风改变了以前对飓风的看法。以前一直是以为上层比ground level厉害(或者是反一下),结果这个飓风是ground level比上层厉害,然后最后一句作者就说要时不时地转换方法态度来测飓风还什么的。

  V4:小鱼考G (ID: 634204)(<700)

  貌似考了一个convention 和sea surface的作用是神马

  还考了一个下列哪个是正确的,里面选项有是不是1997年之前没用过神马神马仪器,是不是用神马神马仪器就可以测某处的什么东西,是不是神马神马仪器需要用xx数据和xx数据...

  V5:xiaohuguo1987 (ID: 636794) (740 V40)

  讲了从1997年开始,科学家引进了更加先进的测量风暴各种data的技术,(forecasters have used Global Positioning System dropwindsondes, a measuring device dropped from hurricane reconnaissance aircraft into the eyewall)。然后具体了应用新技术之后带来的优势,researchers可以测量到eyewall的速度,和outer reach的速度。第二段讲了例外的情况,就是说要知道更加精确的数据,还需要两个数据(convection 和 湿度)。

  问题有文章 infer Global Positioning System dropwindsondes 什么,答案应该是Global Positioning System dropwindsondes只能测量在他下方的风暴的数据,其他错误选项好像有 Global Positioning System dropwindsondes可以测量convection和湿度 还有一个错误选项是1997年之前它用来测量storms。还有一题问文章提及convection和湿度是为了什么?答案很明显,和几经提供的一样。好好看几经提供的背景知识,对这篇文章很有用。

  V6:Hyukkiss (ID: 809192) (710 V34)

  这篇考到要留意一下,题目出的比较难,我这次阅读jj只看了文章结构,事实证明这是不够的。。jj整理版的两题我都考到了,但是我都做错了T.T,一个是infer GPS dropwindsondes的什么,一个是提convection和湿度是为了什么。

  V1

  P1讲的是一种测飓风风速还是什么的方法,到1987年都用这种,说通过这种方法能测到接近地面的一个速度事怎样的,然后30层楼高的速度比接近SURVEY的速度会预计高出多少X(一个数值),风眼又是数值的百分之几,风外围又是数值的百分之几BLABLABLA(第一段重要的主要就是这几个数字,出了一道数学题,考得就是什么样的数据能测出30层楼的速度是200,最后答案貌似是D,就是测到凤眼OR外围的速度也是200,很清楚的记得答案中有个200,别的可能有误,不难,大家自己算一下就可以。) P2讲的就是用一个1988年的示例这种方法哪里不准确,因为可能有BLABLA因素干扰,说要用这种方法的时候考虑进某几种干扰因素就行。(注意:SPEAKER没有说这种方法不可行,只是说怎么改进。会有主旨题,看懂文章不难。)

  V2

  p1:原来只能测出flightlevel的风速,后来用 一个什么飞行器去中心测可以测得相对groundlevel的风速。然后给出数据说 max发生在多高,Strom eye 的风力最大,它的outside一般是90%,然后到达地面就70%了(数字不确定)。

  P2:说现实中的一个hurricane不能用上面的方法测得,说上面的方法不准确,实际的风比用上面方法测得的要低,然后解释说有其他的factor会削弱这个风,列举了两个factor(此处有题)题目有一个非常扯:说什么30层高的楼,下面那个高度玻璃最可能碎。我选好像是strom eye 风速是200m/h的什么什么.....继续失忆 问了Main idea 还有最后那个的举例作用题

  考古:2.3.4 hurricane对maximum sustained风速的定位*

  V1另一篇是写风暴眼的,研究比较了风暴眼外围和中心的强度(storm wall& storm eye),有题问到有个房子在16th floor story?处在什么情况下其窗户最容易被风broken。我记得好像选了200mile那个V2P1: 过去对hurricane风速的研究使用的方法只能测量flight level的风速(1600 feet高度),后来一种新的技术(貌似是可以卫星定位之类的)可以测量相对ground level的风速。这里涉及到2部分风速的测量,near the eye & out of the eye,对于near the eye,max通常发生在一个XX高度,而对于out of the eye则发生在更高处。其中说到一个例子,说near the eye30层高处比地面处风速快20miles/h(有题)。然后说地面相对于高空风速,near the eye地面是高空的90%,out of the eye地面是高空的78%P2: 但是新的研究得到的结论也如何如何不特别有效,还有很多其他factors也会影响风速(有题)

  Questions:

  1). 提到P2中其他factors的作用不特别有效

  2). 貌似是primary purpose

  3). 最绕的一道是说given30层处的玻璃在200miles/h的风速下就会碎掉,则在以下那种情况下30楼的玻璃碎的可能性最大:LZ选的是flight level的地方风速200miles/h的时候考古:

  www.aoji.cn

  V2还有一篇是说探测风暴的,说有了一个飞行器可以到台风中心去探测风速,得到了一些数据,并且小小解释了一下这些数据和它的用处什么的;后来说这个方法不是很完美(不确定),说探测的数据和传统理论有出入(小解了一下传统理论)然后是科学家们提出了四点的解释.......

  V3又想起来一篇阅读是写hurricane dropwindsonde的,一个测量方法之类的,就是有很多数据,写不同高度测量的到的速度不一样。后面的记不清了。

  V4说以前条件不容许研究风暴中eyewall的具体问题。但是科技进步,利用太空中的航拍技术(我理解的)可以得到一系列的关于风暴的图片。可以显示EYEWALL的问题了。对比了在eyewall 和风暴周边的速度。一系列比较。最后还得出EYEWALL的速度其实是多方面受影响的:还和周围条件不然气候温度有关的V4Hurricane P1-如何探测风暴强度的一个research,提到一个aircraft带着A物体上升到空中可以探测到aircraft 自身高度以及below的位置的风暴强度(这里有一个推断题,推断A物体的一些特性,我选的是A物体只能探测到比自己位置低的风)接着讲通过这个探测,发现eye wall的风力强度最大,它的outside一般就是90左右的风力,而到了它相对的地面的时候风里就只有78%了(这里有一个推断题,说如果测到 eyewall风力为200km/h,那么某地的风力是多少)P2-提到现实中的一个hurricane, 说它实际上的风力低于用第一段提出的那个方法预测出来的风力,作者有一个judge说说明这种方法还需要更多的practice证据,来更好的验证完善它V5关于thunderstorm的预测方法,一个什么aircraft在天上预测天气,第一段讲这个东西怎么预测的,第二段讲有一次一个地方的thunderstorm没有预测准,具体这个东西是怎么工作的没有读懂,记得有surface level。V6(V35)我读的那篇和JJ里面的参考文章很像,原文曾多处比对eyewall, surface,的风俗和破坏程度和风俗,用一个三十层楼做比方,阅读题中还加入了计算,很雷,五个选项都是需要用文中数据计算的V7(740)探测风暴那篇我今天看的时候还是很模糊不是看的特别懂里面很多数字什么90% 78% 记得题里有一题好像是说在30层楼高的地方人会觉得以下哪个高度的玻璃最有可能会碎(我感觉就是问一下哪个地方风力最大吧)看了半天选了一个,就是这篇RC花了不少时间其他三篇有些问题不一样但是文章内容是很清楚的补充背景信息GOOGLE上发现没有原文。这里贴出来一小段是跟原文由关的,就当不充背景知识吧,原文除了这段还写了不通高度不同距离之间风速的区别;一下是GOOGLE的背景资料:Since 1997, forecasters have used Global Positioning System dropwindsondes, a measuring device dropped from hurricane reconnaissance aircraft into the eyewall—the windiest part of the hurricane. The sonde system measures temperature, barometric pressure, water vapor, and wind data every 15 feet on its way down. This new method gave meteorologists an important glimpse into the true strength of these devastating storms. The analyses of the dropwindsonde data indicated that, on average, the maximum sustained surface-wind speed was about 90 percent of the wind speed measured at the 10,000-foot aircraft level flown as Andrew approached south Florida. In 1992 Andrew&aposs wind speed was estimated at 75 to 80 percent of the aircraft observations. The research findings resulted in an increase in the estimated wind speeds of Hurricane Andrew from 145 mph to 165 mph. Read more: Hurricanes - average, low, world, high, days, Hurricane and tropical storm season, Portrait of a hurricane, Hurricane casualties, The nations worst weather

  疑似来源:

  www.aoji.cn

  pp96-99

  疑似原文

  Since 1997, forecasters have used Global Positioning System dropwindsondes, a measuring device dropped from hurricane reconnaissance aircraft into the eyewall—the windiest part of the hurricane. The sonde system measures temperature, barometric pressure, water vapor, and wind data every 15 feet on its way down. This new method gave meteorologists an important glimpse into the true strength of these devastating storms. The analyses of the dropwindsonde data indicated that, on average, the maximum sustained surface-wind speed was about 90 percent of the wind speed measured at the 10,000-foot aircraft level flown as Andrew approached south Florida. In 1992 Andrew&aposs wind speed was estimated at 75 to 80 percent of the aircraft observations. The research findings resulted in an increase in the estimated wind speeds of Hurricane Andrew from 145 mph to 165 mph.

  原文來源:

  1. Introduction

  One of the more difficult problems for operational tropical cyclone forecasters is the assessment of the cyclone&aposs maximum sustained surface wind. Even when aircraft reconnaissance data are available, these are typically obtained from the 700 mb (10,000 ft) level; from these flight-level observations, the forecaster is lt to estimate the surface winds. Based on comparisons of flight-level and buoy data, Powell and Black (1990) recommended that a ratio of 63%-73% be used to reduce reconnaissance flight-level wind observations. While operational practices at the National Hurricane Center (NHC) have varied over time, in recent years surface winds have typically been taken to be 80%-90% of the flight-level wind. In view of studies such as Powell and Black, use of these relatively high ratios has periodically resulted in criticism of NHC intensity estimates.

  In 1997, the National Oceanic and Atmospheric Administration (NOAA) and Air Force Reserve Command (AFRC) hurricane reconnaissance aircraft began to deploy Global Positioning System (GPS)-based dropwindsondes (Hock and Franklin 1999) in the hurricane eyewall. These instruments provide for the first time, detailed, accurate profiles (15 ft vertical resolution, with 1-4 mph accuracy) of the inner core of a hurricane from flight level (typically 700 mb) down to the surface. More than 350 such profiles have been obtained through the 1999 hurricane season.

  2. Data and Methodology

  This study is based on a sample of 357 quality-controlled eyewall profiles from the following hurricanes: Guillermo and Erika in 1997; Bonnie, Danielle, Georges, Mitch, Lester, and Madeline in 1998; and Bret, Dennis, Floyd, Gert, Irene, Jose, Lenny, Dora and Eugene in 1999. A majority of these dropsonde releases were made from the 700 mb level. For sondes released from NOAA aircraft, airborne radar was used to determine whether a particular sonde was released in the eyewall; for AFRC sondes we relied on the comments of the operational air-crews, as well as examination of flight-level wind profiles.

  The individual soundings have been used to construct a mean eyewall profile for the data set. Prior to the averaging, the wind at each level in the drop profile is normalized by the wind speed at 700 mb (10,000 ft).

  3. Results

  Figure 1 shows the mean eyewall wind speed profile, where the wind at each level has been normalized by the wind speed at 700 mb (taken from the dropsonde profile, if available, or from the aircraft 700 mb flight-level wind at the time of launch, if not). The strongest winds in the eyewall are found near 500 m (1600 ft) elevation; these are about 20% higher than the 700 mb wind, owing to the warm-core nature of the tropical cyclone. For comparison, the mean profile for non-eyewall sondes within 200 miles of the cyclone center is also shown. In the outer part of the vortex, the low-level wind maximum is found at a somewhat higher elevation and is not as pronounced as in the eyewall. The ratio of the surface to 700 mb wind (R700) is 0.78 in the outer vortex and 0.91 in the eyewall. Note that the former figure is not far from Powell and Black&aposs (1990) estimate of 0.73. This is not surprising given that their sample was comprised almost exclusively of outer vortex observations.

  While a reduction factor of about 0.9 may be appropriate in the mean, individual eyewall profiles illustrate how difficult it can be to estimate a hurricane&aposs maximum surface winds from flight-level reconnaissance data. Figure 2 show an example from 1998&aposs Hurricane Mitch. Over a period of several hours, the NOAA Hurricane Hunter aircraft could find flight-level winds no higher than 150 mph, yet this and several other dropsondes indicated much higher wind speeds near the surface. In this case, Mitch appeared to be weakening from the "top-down"; the circulation at flight-levels was decreasing but this trend had not yet begun at the surface. On the other hand, several storms (including Bonnie) have shown surface winds much lower than the flight-level wind.

  4. Operational Recommendations

  Based on these and similar analyses for other normalization altitudes, the following reduction factors are recommended for reducing flight-level winds in the inner core of a tropical cyclone to the surface (33 ft) level: for the 700 mb level, R = 0.90; for the 850 mb level (commonly flown in tropical storms), R = 0.80. For investigative flights at 1,000 ft, R = 0.85. As significant variations from these means have been noted in individual storms; these guidelines can be modified as conditions warrant. Storm-to-storm variability will primarily be influenced by wind speed, cyclone convective intensity, and sea-surface temperature.

  The mean eyewall profile (Fig. 1) has implications for high-rise buildings and elevated terrain. Table 1 gives the wind at various altitudes as a percentage of the surface wind. Winds at the top of a 30-story building will average about 20 mph (one Saffir-Simpson category) higher than at the surface. This can be seen in an example from Hurricane Georges (Fig. 3). In this case, the surface winds are near the lower end of Category Three; yet at an altitude of 300 ft the winds are now in the middle of Category Four.

  看到这里就是关于GMAT机经的全部内容,大家在GMAT考试中可以有选择性的学习,最后需要提醒各位的是,GMAT机经虽然会对我们解题有所帮助,但是在考场中即使题目很像也要避免秒选,最后祝大家都能考出好成绩。

  • 澳际QQ群:610247479
  • 澳际QQ群:445186879
  • 澳际QQ群:414525537