关闭

澳际学费在线支付平台

GMAT数学排列组合题的解答.

2017/08/11 08:21:20 编辑: 浏览次数:355 移动端

  排列组合是组合学中基本概念,GMAT数学排列组合题也是GMAT考试中常考题型,由于此类题型与其他题型的解题方法略有不同,为此澳际小编特收集整理GMAT数学排列组合题分享给大家,希望对大家有所帮助,文中观点仅供参考。

  首先我们把GMAT排列组合数学题型分为两类:可“区分”的叫做排列 abc P33;不可“区分”的叫做组合 aaa C33。用下列步骤来作一切的排列组合题:

  (1)先考虑是否要分情况考虑

  (2)先计算有限制或数目多的字母,再计算无限制,数目少的字母

  (3)在计算中永远先考虑组合:先分配,再如何排(先取再排)

  例子:

  8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法?

  第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。

  第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。

  5个情况如下:

  a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4

  b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12

  c. 3 3 1 1: C(4,2) =6

  d. 3 2 2 1: C(4,1) * C(3,2) = 12

  e. 2 2 2 2 :1

  4+12+6+12+1=35种放法

  看起来是不是很简单,其实GMAT数学排列组合题本身也难度不大,只要先判断是否需要区分,然后再用列举即可,反复训练几次后将得以最后掌握这类题型。最后祝大家都能考出好成绩。

  • 澳际QQ群:610247479
  • 澳际QQ群:445186879
  • 澳际QQ群:414525537